17 research outputs found

    Fundus image analysis for automatic screening of ophthalmic pathologies

    Full text link
    En los ultimos años el número de casos de ceguera se ha reducido significativamente. A pesar de este hecho, la Organización Mundial de la Salud estima que un 80% de los casos de pérdida de visión (285 millones en 2010) pueden ser evitados si se diagnostican en sus estadios más tempranos y son tratados de forma efectiva. Para cumplir esta propuesta se pretende que los servicios de atención primaria incluyan un seguimiento oftalmológico de sus pacientes así como fomentar campañas de cribado en centros proclives a reunir personas de alto riesgo. Sin embargo, estas soluciones exigen una alta carga de trabajo de personal experto entrenado en el análisis de los patrones anómalos propios de cada enfermedad. Por lo tanto, el desarrollo de algoritmos para la creación de sistemas de cribado automáticos juga un papel vital en este campo. La presente tesis persigue la identificacion automática del daño retiniano provocado por dos de las patologías más comunes en la sociedad actual: la retinopatía diabética (RD) y la degenaración macular asociada a la edad (DMAE). Concretamente, el objetivo final de este trabajo es el desarrollo de métodos novedosos basados en la extracción de características de la imagen de fondo de ojo y clasificación para discernir entre tejido sano y patológico. Además, en este documento se proponen algoritmos de pre-procesado con el objetivo de normalizar la alta variabilidad existente en las bases de datos publicas de imagen de fondo de ojo y eliminar la contribución de ciertas estructuras retinianas que afectan negativamente en la detección del daño retiniano. A diferencia de la mayoría de los trabajos existentes en el estado del arte sobre detección de patologías en imagen de fondo de ojo, los métodos propuestos a lo largo de este manuscrito evitan la necesidad de segmentación de las lesiones o la generación de un mapa de candidatos antes de la fase de clasificación. En este trabajo, Local binary patterns, perfiles granulométricos y la dimensión fractal se aplican de manera local para extraer información de textura, morfología y tortuosidad de la imagen de fondo de ojo. Posteriormente, esta información se combina de diversos modos formando vectores de características con los que se entrenan avanzados métodos de clasificación formulados para discriminar de manera óptima entre exudados, microaneurismas, hemorragias y tejido sano. Mediante diversos experimentos, se valida la habilidad del sistema propuesto para identificar los signos más comunes de la RD y DMAE. Para ello se emplean bases de datos públicas con un alto grado de variabilidad sin exlcuir ninguna imagen. Además, la presente tesis también cubre aspectos básicos del paradigma de deep learning. Concretamente, se presenta un novedoso método basado en redes neuronales convolucionales (CNNs). La técnica de transferencia de conocimiento se aplica mediante el fine-tuning de las arquitecturas de CNNs más importantes en el estado del arte. La detección y localización de exudados mediante redes neuronales se lleva a cabo en los dos últimos experimentos de esta tesis doctoral. Cabe destacar que los resultados obtenidos mediante la extracción de características "manual" y posterior clasificación se comparan de forma objetiva con las predicciones obtenidas por el mejor modelo basado en CNNs. Los prometedores resultados obtenidos en esta tesis y el bajo coste y portabilidad de las cámaras de adquisión de imagen de retina podrían facilitar la incorporación de los algoritmos desarrollados en este trabajo en un sistema de cribado automático que ayude a los especialistas en la detección de patrones anomálos característicos de las dos enfermedades bajo estudio: RD y DMAE.In last years, the number of blindness cases has been significantly reduced. Despite this promising news, the World Health Organisation estimates that 80% of visual impairment (285 million cases in 2010) could be avoided if diagnosed and treated early. To accomplish this purpose, eye care services need to be established in primary health and screening campaigns should be a common task in centres with people at risk. However, these solutions entail a high workload for trained experts in the analysis of the anomalous patterns of each eye disease. Therefore, the development of algorithms for automatic screening system plays a vital role in this field. This thesis focuses on the automatic identification of the retinal damage provoked by two of the most common pathologies in the current society: diabetic retinopathy (DR) and age-related macular degeneration (AMD). Specifically, the final goal of this work is to develop novel methods, based on fundus image description and classification, to characterise the healthy and abnormal tissue in the retina background. In addition, pre-processing algorithms are proposed with the aim of normalising the high variability of fundus images and removing the contribution of some retinal structures that could hinder in the retinal damage detection. In contrast to the most of the state-of-the-art works in damage detection using fundus images, the methods proposed throughout this manuscript avoid the necessity of lesion segmentation or the candidate map generation before the classification stage. Local binary patterns, granulometric profiles and fractal dimension are locally computed to extract texture, morphological and roughness information from retinal images. Different combinations of this information feed advanced classification algorithms formulated to optimally discriminate exudates, microaneurysms, haemorrhages and healthy tissues. Through several experiments, the ability of the proposed system to identify DR and AMD signs is validated using different public databases with a large degree of variability and without image exclusion. Moreover, this thesis covers the basics of the deep learning paradigm. In particular, a novel approach based on convolutional neural networks is explored. The transfer learning technique is applied to fine-tune the most important state-of-the-art CNN architectures. Exudate detection and localisation tasks using neural networks are carried out in the last two experiments of this thesis. An objective comparison between the hand-crafted feature extraction and classification process and the prediction models based on CNNs is established. The promising results of this PhD thesis and the affordable cost and portability of retinal cameras could facilitate the further incorporation of the developed algorithms in a computer-aided diagnosis (CAD) system to help specialists in the accurate detection of anomalous patterns characteristic of the two diseases under study: DR and AMD.En els últims anys el nombre de casos de ceguera s'ha reduït significativament. A pesar d'este fet, l'Organització Mundial de la Salut estima que un 80% dels casos de pèrdua de visió (285 milions en 2010) poden ser evitats si es diagnostiquen en els seus estadis més primerencs i són tractats de forma efectiva. Per a complir esta proposta es pretén que els servicis d'atenció primària incloguen un seguiment oftalmològic dels seus pacients així com fomentar campanyes de garbellament en centres regentats per persones d'alt risc. No obstant això, estes solucions exigixen una alta càrrega de treball de personal expert entrenat en l'anàlisi dels patrons anòmals propis de cada malaltia. Per tant, el desenrotllament d'algoritmes per a la creació de sistemes de garbellament automàtics juga un paper vital en este camp. La present tesi perseguix la identificació automàtica del dany retiniano provocat per dos de les patologies més comunes en la societat actual: la retinopatia diabètica (RD) i la degenaración macular associada a l'edat (DMAE) . Concretament, l'objectiu final d'este treball és el desenrotllament de mètodes novedodos basats en l'extracció de característiques de la imatge de fons d'ull i classificació per a discernir entre teixit sa i patològic. A més, en este document es proposen algoritmes de pre- processat amb l'objectiu de normalitzar l'alta variabilitat existent en les bases de dades publiques d'imatge de fons d'ull i eliminar la contribució de certes estructures retinianas que afecten negativament en la detecció del dany retiniano. A diferència de la majoria dels treballs existents en l'estat de l'art sobre detecció de patologies en imatge de fons d'ull, els mètodes proposats al llarg d'este manuscrit eviten la necessitat de segmentació de les lesions o la generació d'un mapa de candidats abans de la fase de classificació. En este treball, Local binary patterns, perfils granulometrics i la dimensió fractal s'apliquen de manera local per a extraure informació de textura, morfologia i tortuositat de la imatge de fons d'ull. Posteriorment, esta informació es combina de diversos modes formant vectors de característiques amb els que s'entrenen avançats mètodes de classificació formulats per a discriminar de manera òptima entre exsudats, microaneurismes, hemorràgies i teixit sa. Per mitjà de diversos experiments, es valida l'habilitat del sistema proposat per a identificar els signes més comuns de la RD i DMAE. Per a això s'empren bases de dades públiques amb un alt grau de variabilitat sense exlcuir cap imatge. A més, la present tesi també cobrix aspectes bàsics del paradigma de deep learning. Concretament, es presenta un nou mètode basat en xarxes neuronals convolucionales (CNNs) . La tècnica de transferencia de coneixement s'aplica per mitjà del fine-tuning de les arquitectures de CNNs més importants en l'estat de l'art. La detecció i localització d'exudats per mitjà de xarxes neuronals es du a terme en els dos últims experiments d'esta tesi doctoral. Cal destacar que els resultats obtinguts per mitjà de l'extracció de característiques "manual" i posterior classificació es comparen de forma objectiva amb les prediccions obtingudes pel millor model basat en CNNs. Els prometedors resultats obtinguts en esta tesi i el baix cost i portabilitat de les cambres d'adquisión d'imatge de retina podrien facilitar la incorporació dels algoritmes desenrotllats en este treball en un sistema de garbellament automàtic que ajude als especialistes en la detecció de patrons anomálos característics de les dos malalties baix estudi: RD i DMAE.Colomer Granero, A. (2018). Fundus image analysis for automatic screening of ophthalmic pathologies [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/99745TESI

    An approach to developing a neurophysiological index capable of predicting a student's cognitive performance from classroom design

    Full text link
    [EN] Classroom design influences cognitive functions such as memory and attention. This relationship between environment and performance is complex, and the cognitive and neurophysiological effects are closely intertwined. The aim of this paper is to lay the foundations for a methodology capable of assessing the impact of classroom design on students' attention and memory, using automated cognitive indices based on neurophysiological measures. To this end, a laboratory study was carried out in which 50 subjects performed cognitive tests in virtual environments with different design configurations. During the tests, their psychological responses (attention and memory performance) and neurophysiological responses (electrocardiogram, electroencephalogram, and electrodermal response) were recorded. After processing the signals and extracting different metrics, correlations between the two types of responses were studied. This provided a basis of relationships for the future choice of metrics with which to train predictive models. The use of Artificial Intelligence will make it possible to automatically quantify the impact of classroom design on students' attention and memory, using indices based on neurophysiological measures.[ES] El diseño del aula influye en las funciones cognitivas, como la memoria y la atención. Esta relación entre entorno y rendimiento es compleja, y los efectos cognitivos y neurofisiológicos están estrechamente entrelazados. El objetivo del presente trabajo es centrar las bases de una metodología capaz de evaluar el impacto del diseño del aula en la atención y memoria de los alumnos, a partir de índices cognitivos automatizados basados en medidas neurofisiológicas. Para ello se llevó a cabo un estudio en laboratorio, en el que 50 sujetos realizaron pruebas cognitivas en entornos virtuales con diferentes configuraciones de diseño. Durante estas se registraron sus respuestas psicológicas (relativas al rendimiento en atención y memoria) y respuestas neurofisiológicas (electrocardiograma, electroencefalograma, y respuesta electrodérmica). Tras el tratamiento de las señales y la extracción de distintas métricas, se estudiaron las correlaciones entre ambos tipos de respuestas. Esto ofreció una base de relaciones para la futura elección de métricas con las que entrenar modelos predictivos. El uso de Inteligencia Artificial permitirá cuantificar de manera automática el impacto del diseño del aula en la atención y memoria de los alumnos, a partir de índices basados en medidas neurofisiológicas. Desarrollo con distintas aplicaciones en el área de la educación.Este trabajo ha sido financiado por el Ministerio de Economía, Industria y Competitividad de España (Proyecto BIA2017-86157-R; PRE2018-084051).Higuera Trujillo, JL.; Colomer Granero, A.; Naranjo Ornedo, V.; Llinares Millan, C. (2021). Una aproximación al desarrollo de un índice neurofisiológico capaz de predecir el rendimiento cognitivo de un alumno a partir del diseño del aula. Editorial Universitat Politècnica de València. 619-618. https://doi.org/10.4995/EDIFICATE2021.2021.13578OCS61961

    Aircraft Dynamic Rerouting Support

    Get PDF
    In the frame of Clean Sky 2 JU, the HARVIS (Human Aircraft Roadmap for Virtual Intelligent System) project introduces a cockpit assistant committed to help the pilot to reroute the aircraft in single-pilot operations. A relevant scenario for this AI assistant is that in which diversion to alternate airfield is required after an emergency. Another interesting scenario is the anticipation of radar vectors in the arrivals with time enough to safely configure the aircraft for the descent. A demonstrator is being developed for this second scenario in the context of Project HARVIS (www.harvis-project.eu). Diversion is often required after system failure, medical emergency, or just for weather phenomena (dense fog, storms, etc.) in the approaching. During regular operation if a diversion is needed the pilot in command and first officer discuss on the multiple options they have and try to find out the one they think is the best. The AI assistant will take into account characteristics of nearby airports, METAR at destination, and facilities to take care of passengers, among other factors. It may then consider several options, assess the risks and benefits of each one, and finally inform the pilot accordingly. In this scenario, the digital assistant takes care of the Options and Risks in a FORDEC procedure

    Impulsive Personality Traits Predicted Weight Loss in Individuals with Type 2 Diabetes after 3 Years of Lifestyle Interventions

    Get PDF
    Impulsivity has been associated with type 2 diabetes (T2D) and may negatively impact its management. This study aimed to investigate impulsive personality traits in an older adult population with T2D and their predicting role in long-term weight control and glycemic management, through glycated hemoglobin (HbA(1c)), following 3 years of intervention with a Mediterranean diet. The Impulsive Behavior Scale (UPPS-P) was administered as a measure of impulsive traits at baseline. Results showed higher total baseline scores of UPPS-P, and higher positive urgency in individuals with T2D, compared with those without T2D. The regression analysis in patients with T2D showed that sensation seeking and lack of perseverance predicted weight loss at follow-up. By contrast, impulsive traits did not predict follow-up levels of HbA(1c). In conclusion, the present findings suggest that higher impulsive traits in individuals with T2D seem to affect long-term weight control, but not glycemic control

    Toward a Non Stabilized Approach assistant based on human expertise

    Get PDF
    97% of Non-Stabilized Approach (NSA) are continued until landing going against Standard Operational Procedures (SOP). For some of these approaches, the reason is a lack of situation awareness for others it is because of operational constraints that standard SOP do not take into account like ATC, remaining fuel on board, weather… Most of the time everything goes well but pilots often admit afterwards that they should have go-around and that safety margins were greatly reduced

    Consumer Neuroscience-Based Metrics Predict Recall, Liking and Viewing Rates in Online Advertising

    Full text link
    [EN] The purpose of the present study is to investigate whether the effectiveness of a new ad on digital channels (YouTube) can be predicted by using neural networks and neuroscience-based metrics (brain response, heart rate variability and eye tracking). Neurophysiological records from 35 participants were exposed to 8 relevant TV Super Bowl commercials. Correlations between neurophysiological-based metrics, ad recall, ad liking, the ACE metrix score and the number of views on YouTube during a year were investigated. Our findings suggest a significant correlation between neuroscience metrics and self-reported of ad effectiveness and the direct number of views on the YouTube channel. In addition, and using an artificial neural network based on neuroscience metrics, the model classifies (82.9% of average accuracy) and estimate the number of online views (mean error of 0.199). The results highlight the validity of neuromarketing-based techniques for predicting the success of advertising responses. Practitioners can consider the proposed methodology at the design stages of advertising content, thus enhancing advertising effectiveness. The study pioneers the use of neurophysiological methods in predicting advertising success in a digital context. This is the first article that has examined whether these measures could actually be used for predicting views for advertising on YouTube.This work has been supported by the Heineken Endowed Chair in Neuromarketing at the Polytechnic University of Valencia in order to research and apply new technologies and neuroscience in communication, distribution and consumption fields.Guixeres Provinciale, J.; Bigné-Alcañiz, E.; Ausin-Azofra, JM.; Alcañiz Raya, ML.; Colomer, A.; Fuentes-Hurtado, FJ.; Naranjo Ornedo, V. (2017). Consumer Neuroscience-Based Metrics Predict Recall, Liking and Viewing Rates in Online Advertising. Frontiers in Psychology. 8:1-14. https://doi.org/10.3389/fpsyg.2017.01808S1148Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical & Biological Engineering & Computing, 44(12), 1031-1051. doi:10.1007/s11517-006-0119-0Aftanas, L. I., Reva, N. V., Varlamov, A. A., Pavlov, S. V., & Makhnev, V. P. (2004). Analysis of Evoked EEG Synchronization and Desynchronization in Conditions of Emotional Activation in Humans: Temporal and Topographic Characteristics. Neuroscience and Behavioral Physiology, 34(8), 859-867. doi:10.1023/b:neab.0000038139.39812.ebAstolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M. G., … Babiloni, F. (2008). Neural Basis for Brain Responses to TV Commercials: A High-Resolution EEG Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 522-531. doi:10.1109/tnsre.2008.2009784Astolfi, L., Fallani, F. D. V., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M. G., … Babiloni, F. (2009). Brain activity during the memorization of visual scenes from TV commercials: An application of high resolution EEG and steady state somatosensory evoked potentials technologies. Journal of Physiology-Paris, 103(6), 333-341. doi:10.1016/j.jphysparis.2009.07.002Baack, D. W., Wilson, R. T., & Till, B. D. (2008). Creativity and Memory Effects: Recall, Recognition, and an Exploration of Nontraditional Media. Journal of Advertising, 37(4), 85-94. doi:10.2753/joa0091-3367370407Bellman, S., Murphy, J., Treleaven-Hassard, S., O’Farrell, J., Qiu, L., & Varan, D. (2013). Using Internet Behavior to Deliver Relevant Television Commercials. Journal of Interactive Marketing, 27(2), 130-140. doi:10.1016/j.intmar.2012.12.001Bigné, E. (2016). Frontiers in research in business: Will you be in? European Journal of Management and Business Economics, 25(3), 89-90. doi:10.1016/j.redeen.2016.09.001Bigné, E., Llinares, C., & Torrecilla, C. (2016). Elapsed time on first buying triggers brand choices within a category: A virtual reality-based study. Journal of Business Research, 69(4), 1423-1427. doi:10.1016/j.jbusres.2015.10.119Blanco-Velasco, M., Weng, B., & Barner, K. E. (2008). ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Computers in Biology and Medicine, 38(1), 1-13. doi:10.1016/j.compbiomed.2007.06.003Boksem, M. A. S., & Smidts, A. (2015). Brain Responses to Movie Trailers Predict Individual Preferences for Movies and Their Population-Wide Commercial Success. Journal of Marketing Research, 52(4), 482-492. doi:10.1509/jmr.13.0572Bradley, M. M., Houbova, P., Miccoli, L., Costa, V. D., & Lang, P. J. (2011). Scan patterns when viewing natural scenes: Emotion, complexity, and repetition. Psychophysiology, 48(11), 1544-1553. doi:10.1111/j.1469-8986.2011.01223.xCastiglioni, P., & Di Rienzo, M. (s. f.). On the evaluation of heart rate spectra: the Lomb periodogram. Computers in Cardiology 1996. doi:10.1109/cic.1996.542584Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., & Moon, S. (2007). I tube, you tube, everybody tubes. Proceedings of the 7th ACM SIGCOMM conference on Internet measurement - IMC ’07. doi:10.1145/1298306.1298309Chen, L., Zhou, Y., & Chiu, D. M. (2014). A lifetime model of online video popularity. 2014 23rd International Conference on Computer Communication and Networks (ICCCN). doi:10.1109/icccn.2014.6911774Christoforou, C., Christou-Champi, S., Constantinidou, F., & Theodorou, M. (2015). From the eyes and the heart: a novel eye-gaze metric that predicts video preferences of a large audience. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00579Colomer Granero, A., Fuentes-Hurtado, F., Naranjo Ornedo, V., Guixeres Provinciale, J., Ausín, J. M., & Alcañiz Raya, M. (2016). A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in Computational Neuroscience, 10. doi:10.3389/fncom.2016.00074Couwenberg, L. E., Boksem, M. A. S., Dietvorst, R. C., Worm, L., Verbeke, W. J. M. I., & Smidts, A. (2017). Neural responses to functional and experiential ad appeals: Explaining ad effectiveness. International Journal of Research in Marketing, 34(2), 355-366. doi:10.1016/j.ijresmar.2016.10.005Curry, B., & Moutinho, L. (1993). Neural Networks in Marketing: Modelling Consumer Responses to Advertising Stimuli. European Journal of Marketing, 27(7), 5-20. doi:10.1108/03090569310040325Daugherty, T., Hoffman, E., & Kennedy, K. (2016). Research in reverse: Ad testing using an inductive consumer neuroscience approach. Journal of Business Research, 69(8), 3168-3176. doi:10.1016/j.jbusres.2015.12.005Davidson, R. J. (2004). What does the prefrontal cortex «do» in affect: perspectives on frontal EEG asymmetry research. Biological Psychology, 67(1-2), 219-234. doi:10.1016/j.biopsycho.2004.03.008Deitz, G. D., Royne, M. B., Peasley, M. C., & Huang, J. «Coco». (2016). EEG-Based Measures versus Panel Ratings: Predicting Social-Media Based Behavioral Responses to Super Bowl Ads. Journal of Advertising Research, 56(2), 217. doi:10.2501/jar-2016-030Demarzo, M. M. P., Montero-Marin, J., Stein, P. K., Cebolla, A. s, Provinciale, J. G., & García-Campayo, J. (2014). Mindfulness may both moderate and mediate the effect of physical fitness on cardiovascular responses to stress: a speculative hypothesis. Frontiers in Physiology, 5. doi:10.3389/fphys.2014.00105Santos, R. D. O. J. dos, Oliveira, J. H. C. de, Rocha, J. B., & Giraldi, J. D. M. E. (2015). Eye Tracking in Neuromarketing: A Research Agenda for Marketing Studies. International Journal of Psychological Studies, 7(1). doi:10.5539/ijps.v7n1p32Elsen, M., Pieters, R., & Wedel, M. (2016). Thin Slice Impressions: How Advertising Evaluation Depends on Exposure Duration. Journal of Marketing Research, 53(4), 563-579. doi:10.1509/jmr.13.0398Feise, R. J. (2002). Do multiple outcome measures require p-value adjustment? BMC Medical Research Methodology, 2(1). doi:10.1186/1471-2288-2-8Fishman, M., Jacono, F. J., Park, S., Jamasebi, R., Thungtong, A., Loparo, K. A., & Dick, T. E. (2012). A method for analyzing temporal patterns of variability of a time series from Poincaré plots. Journal of Applied Physiology, 113(2), 297-306. doi:10.1152/japplphysiol.01377.2010Fjorback, L. O., Arendt, M., Ørnbøl, E., Fink, P., & Walach, H. (2011). Mindfulness-Based Stress Reduction and Mindfulness-Based Cognitive Therapy - a systematic review of randomized controlled trials. Acta Psychiatrica Scandinavica, 124(2), 102-119. doi:10.1111/j.1600-0447.2011.01704.xGao, J. F., Yang, Y., Lin, P., Wang, P., & Zheng, C. X. (2009). Automatic Removal of Eye-Movement and Blink Artifacts from EEG Signals. Brain Topography, 23(1), 105-114. doi:10.1007/s10548-009-0131-4Geisler, F. C. M., Vennewald, N., Kubiak, T., & Weber, H. (2010). The impact of heart rate variability on subjective well-being is mediated by emotion regulation. Personality and Individual Differences, 49(7), 723-728. doi:10.1016/j.paid.2010.06.015Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, N., & Wichansky, A. M. (2002). Eye tracking in web search tasks. Proceedings of the symposium on Eye tracking research & applications - ETRA ’02. doi:10.1145/507072.507082Grandjean, D., Sander, D., & Scherer, K. R. (2008). Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization. Consciousness and Cognition, 17(2), 484-495. doi:10.1016/j.concog.2008.03.019Guerreiro, J., Rita, P., & Trigueiros, D. (2015). Attention, emotions and cause-related marketing effectiveness. European Journal of Marketing, 49(11/12), 1728-1750. doi:10.1108/ejm-09-2014-0543Ha, L. (2008). Online Advertising Research in Advertising Journals: A Review. Journal of Current Issues & Research in Advertising, 30(1), 31-48. doi:10.1080/10641734.2008.10505236Harmon-Jones, E., Gable, P. A., & Peterson, C. K. (2010). The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biological Psychology, 84(3), 451-462. doi:10.1016/j.biopsycho.2009.08.010Holmqvist, K., Andrà, C., Lindström, P., Arzarello, F., Ferrara, F., Robutti, O., & Sabena, C. (2011). A method for quantifying focused versus overview behavior in AOI sequences. Behavior Research Methods, 43(4), 987-998. doi:10.3758/s13428-011-0104-xKent, R. J., & Allen, C. T. (1994). Competitive Interference Effects in Consumer Memory for Advertising: The Role of Brand Familiarity. Journal of Marketing, 58(3), 97. doi:10.2307/1252313Khushaba, R. N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B. E., & Townsend, C. (2013). Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Systems with Applications, 40(9), 3803-3812. doi:10.1016/j.eswa.2012.12.095Kim, K., Hayes, J. L., Avant, J. A., & Reid, L. N. (2014). Trends in Advertising Research: A Longitudinal Analysis of Leading Advertising, Marketing, and Communication Journals, 1980 to 2010. Journal of Advertising, 43(3), 296-316. doi:10.1080/00913367.2013.857620Kopton, I. M., & Kenning, P. (2014). Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00549Kühn, S., Strelow, E., & Gallinat, J. (2016). Multiple «buy buttons» in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI. NeuroImage, 136, 122-128. doi:10.1016/j.neuroimage.2016.05.021Lang, A., Bolls, P., Potter, R. F., & Kawahara, K. (1999). The effects of production pacing and arousing content on the information processing of television messages. Journal of Broadcasting & Electronic Media, 43(4), 451-475. doi:10.1080/08838159909364504Lee, J., & Ahn, J.-H. (2012). Attention to Banner Ads and Their Effectiveness: An Eye-Tracking Approach. International Journal of Electronic Commerce, 17(1), 119-137. doi:10.2753/jec1086-4415170105McAlister, L., Srinivasan, R., Jindal, N., & Cannella, A. A. (2016). Advertising Effectiveness: The Moderating Effect of Firm Strategy. Journal of Marketing Research, 53(2), 207-224. doi:10.1509/jmr.13.0285McDuff, D., Kaliouby, R. E., Cohn, J. F., & Picard, R. W. (2015). Predicting Ad Liking and Purchase Intent: Large-Scale Analysis of Facial Responses to Ads. IEEE Transactions on Affective Computing, 6(3), 223-235. doi:10.1109/taffc.2014.2384198Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229-240. doi:10.1111/j.1469-8986.2010.01061.xBabiloni, F. (2012). Consumer Nueroscience: A New Area of Study for Biomedical Engineers. IEEE Pulse, 3(3), 21-23. doi:10.1109/mpul.2012.2189166Mould, D., Mandryk, R. L., & Li, H. (2012). Emotional response and visual attention to non-photorealistic images. Computers & Graphics, 36(6), 658-672. doi:10.1016/j.cag.2012.03.039Cartocci, G., Caratù, M., Modica, E., Maglione, A. G., Rossi, D., Cherubino, P., & Babiloni, F. (2017). Electroencephalographic, Heart Rate, and Galvanic Skin Response Assessment for an Advertising Perception Study: Application to Antismoking Public Service Announcements. Journal of Visualized Experiments, (126). doi:10.3791/55872Pan, J., & Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230-236. doi:10.1109/tbme.1985.325532Pieters, R., Warlop, L., & Wedel, M. (2002). Breaking Through the Clutter: Benefits of Advertisement Originality and Familiarity for Brand Attention and Memory. Management Science, 48(6), 765-781. doi:10.1287/mnsc.48.6.765.192Piskorski, J., & Guzik, P. (2007). Geometry of the Poincaré plot ofRRintervals and its asymmetry in healthy adults. Physiological Measurement, 28(3), 287-300. doi:10.1088/0967-3334/28/3/005Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039Ruanguttamanun, C. (2014). Neuromarketing: I Put Myself into a fMRI Scanner and Realized that I love Louis Vuitton Ads. Procedia - Social and Behavioral Sciences, 148, 211-218. doi:10.1016/j.sbspro.2014.07.036Shehu, E., Bijmolt, T. H. A., & Clement, M. (2016). Effects of Likeability Dynamics on Consumers’ Intention to Share Online Video Advertisements. Journal of Interactive Marketing, 35, 27-43. doi:10.1016/j.intmar.2016.01.001Smith, A. N., Fischer, E., & Yongjian, C. (2012). How Does Brand-related User-generated Content Differ across YouTube, Facebook, and Twitter? Journal of Interactive Marketing, 26(2), 102-113. doi:10.1016/j.intmar.2012.01.002Strach, P., Zuber, K., Fowler, E. F., Ridout, T. N., & Searles, K. (2015). In a Different Voice? Explaining the Use of Men and Women as Voice-Over Announcers in Political Advertising. Political Communication, 32(2), 183-205. doi:10.1080/10584609.2014.914614Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381. doi:10.1093/oxfordjournals.eurheartj.a014868Tomkovick, C., Yelkur, R., & Christians, L. (2001). The USA’s biggest marketing event keeps getting bigger: an in-depth look at Super Bowl advertising in the 1990s. Journal of Marketing Communications, 7(2), 89-108. doi:10.1080/13527260121725Vakratsas, D., & Ambler, T. (1999). How Advertising Works: What Do We Really Know? Journal of Marketing, 63(1), 26. doi:10.2307/1251999Valenza, G., Allegrini, P., Lanatà, A., & Scilingo, E. P. (2012). Dominant Lyapunov exponent and approximate entropy in heart rate variability during emotional visual elicitation. Frontiers in Neuroengineering, 5. doi:10.3389/fneng.2012.00003Valenza, G., Citi, L., Lanatá, A., Scilingo, E. P., & Barbieri, R. (2014). Revealing Real-Time Emotional Responses: a Personalized Assessment based on Heartbeat Dynamics. Scientific Reports, 4(1). doi:10.1038/srep04998Varan, D., Lang, A., Barwise, P., Weber, R., & Bellman, S. (2015). How Reliable Are Neuromarketers’ Measures of Advertising Effectiveness? Journal of Advertising Research, 55(2), 176-191. doi:10.2501/jar-55-2-176-191Vecchiato, G., Astolfi, L., Tabarrini, A., Salinari, S., Mattia, D., Cincotti, F., … Babiloni, F. (2010). EEG Analysis of the Brain Activity during the Observation of Commercial, Political, or Public Service Announcements. Computational Intelligence and Neuroscience, 2010, 1-7. doi:10.1155/2010/985867Vecchiato, G., Maglione, A. G., Cherubino, P., Wasikowska, B., Wawrzyniak, A., Latuszynska, A., … Babiloni, F. (2014). Neurophysiological Tools to Investigate Consumer’s Gender Differences during the Observation of TV Commercials. Computational and Mathematical Methods in Medicine, 2014, 1-12. doi:10.1155/2014/912981Vecchiato, G., Susac, A., Margeti, S., De Vico Fallani, F., Maglione, A. G., Supek, S., … Babiloni, F. (2012). High-Resolution EEG Analysis of Power Spectral Density Maps and Coherence Networks in a Proportional Reasoning Task. Brain Topography, 26(2), 303-314. doi:10.1007/s10548-012-0259-5Vecchiato, G., Toppi, J., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., … Babiloni, F. (2011). Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements. Medical & Biological Engineering & Computing, 49(5), 579-583. doi:10.1007/s11517-011-0747-xVenkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger, B., … Winer, R. S. (2015). Predicting Advertising success beyond Traditional Measures: New Insights from Neurophysiological Methods and Market Response Modeling. Journal of Marketing Research, 52(4), 436-452. doi:10.1509/jmr.13.0593Wackermann, J., Lehmann, D., Michel, C. M., & Strik, W. K. (1993). Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. International Journal of Psychophysiology, 14(3), 269-283. doi:10.1016/0167-8760(93)90041-mWedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80(6), 97-121. doi:10.1509/jm.15.0413Werkle-Bergner, M., Müller, V., Li, S.-C., & Lindenberger, U. (2006). Cortical EEG correlates of successful memory encoding: Implications for lifespan comparisons. Neuroscience & Biobehavioral Reviews, 30(6), 839-854. doi:10.1016/j.neubiorev.2006.06.009West, P. M., Brockett, P. L., & Golden, L. L. (1997). A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice. Marketing Science, 16(4), 370-391. doi:10.1287/mksc.16.4.370Zhou, R., Khemmarat, S., Gao, L., Wan, J., & Zhang, J. (2016). How YouTube videos are discovered and its impact on video views. Multimedia Tools and Applications, 75(10), 6035-6058. doi:10.1007/s11042-015-3206-

    A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents

    Get PDF
    This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permissionThis work focuses on finding the most discriminatory or representative features that allow to classify commercials according to negative, neutral and positive effectiveness based on the Ace Score index. For this purpose, an experiment involving forty-seven participants was carried out. In this experiment electroencephalography (EEG), electrocardiography (ECG), Galvanic Skin Response (GSR) and respiration data were acquired while subjects were watching a 30-min audiovisual content. This content was composed by a submarine documentary and nine commercials (one of themthe ad under evaluation). After the signal pre-processing, four sets of features were extracted from the physiological signals using different state-of-the-art metrics. These features computed in time and frequency domains are the inputs to several basic and advanced classifiers. An average of 89.76% of the instances was correctly classified according to the Ace Score index. The best results were obtained by a classifier consisting of a combination between AdaBoost and RandomForest with automatic selection of features. The selected features were those extracted from GSR and HRV signals. These results are promising in the audiovisual content evaluation field by means of physiological signal processing.This work has been supported by the Heineken Endowed Chair in Neuromarketing at the Universitat Politecnica de Valencia in order to research and apply new technologies and neuroscience in communication, distribution and consumption fields.Colomer Granero, A.; Fuentes-Hurtado, FJ.; Naranjo Ornedo, V.; Guixeres Provinciale, J.; Ausin-Azofra, JM.; Alcañiz Raya, ML. (2016). A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in Computational Neuroscience. 10(74):1-16. doi:10.3389/fncom.2016.00074S116107

    Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors

    Get PDF
    [EN] Affective Computing has emerged as an important field of study that aims to develop systems that can automatically recognize emotions. Up to the present, elicitation has been carried out with nonimmersive stimuli. This study, on the other hand, aims to develop an emotion recognition system for affective states evoked through Immersive Virtual Environments. Four alternative virtual rooms were designed to elicit four possible arousal-valence combinations, as described in each quadrant of the Circumplex Model of Affects. An experiment involving the recording of the electroencephalography (EEG) and electrocardiography (ECG) of sixty participants was carried out. A set of features was extracted from these signals using various state-of-the-art metrics that quantify brain and cardiovascular linear and nonlinear dynamics, which were input into a Support Vector Machine classifier to predict the subject's arousal and valence perception. The model's accuracy was 75.00% along the arousal dimension and 71.21% along the valence dimension. Our findings validate the use of Immersive Virtual Environments to elicit and automatically recognize different emotional states from neural and cardiac dynamics; this development could have novel applications in fields as diverse as Architecture, Health, Education and Videogames.This work was supported by the Ministerio de Economia y Competitividad. Spain (Project TIN2013-45736-R).Marín-Morales, J.; Higuera-Trujillo, JL.; Greco, A.; Guixeres Provinciale, J.; Llinares Millán, MDC.; Scilingo, EP.; Alcañiz Raya, ML.... (2018). Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors. Scientific Reports. 8:1-15. https://doi.org/10.1038/s41598-018-32063-4S1158Picard, R. W. Affective computing. (MIT press, 1997).Picard, R. W. Affective Computing: Challenges. Int. J. Hum. Comput. Stud. 59, 55–64 (2003).Jerritta, S., Murugappan, M., Nagarajan, R. & Wan, K. Physiological signals based human emotion Recognition: a review. Signal Process. its Appl. (CSPA), 2011 IEEE 7th Int. Colloq. 410–415, https://doi.org/10.1109/CSPA.2011.5759912 (2011).Harms, M. B., Martin, A. & Wallace, G. L. Facial emotion recognition in autism spectrum disorders: A review of behavioral and neuroimaging studies. Neuropsychol. Rev. 20, 290–322 (2010).Koolagudi, S. G. & Rao, K. S. Emotion recognition from speech: A review. Int. J. Speech Technol. 15, 99–117 (2012).Gross, J. J. & Levenson, R. W. Emotion elicitation using films. Cogn. Emot. 9, 87–108 (1995).Lindal, P. J. & Hartig, T. Architectural variation, building height, and the restorative quality of urban residential streetscapes. J. Environ. Psychol. 33, 26–36 (2013).Ulrich, R. View through a window may influence recovery from surgery. Science (80-.). 224, 420–421 (1984).Fernández-Caballero, A. et al. Smart environment architecture for emotion detection and regulation. J. Biomed. Inform. 64, 55–73 (2016).Ekman, P. Basic Emotions. Handbook of cognition and emotion 45–60, https://doi.org/10.1017/S0140525X0800349X (1999).Posner, J., Russell, J. A. & Peterson, B. S. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17, 715–34 (2005).Russell, J. A. & Mehrabian, A. Evidence for a three-factor theory of emotions. J. Res. Pers. 11, 273–294 (1977).Calvo, R. A. & D’Mello, S. Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1, 18–37 (2010).Valenza, G. et al. Combining electroencephalographic activity and instantaneous heart rate for assessing brain–heart dynamics during visual emotional elicitation in healthy subjects. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150176 (2016).Valenza, G., Lanata, A. & Scilingo, E. P. The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans. Affect. Comput. 3, 237–249 (2012).Valenza, G., Citi, L., Lanatá, A., Scilingo, E. P. & Barbieri, R. Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics. Sci. Rep. 4, 4998 (2014).Valenza, G. et al. Wearable monitoring for mood recognition in bipolar disorder based on history-dependent long-term heart rate variability analysis. IEEE J. Biomed. Heal. Informatics 18, 1625–1635 (2014).Piwek, L., Ellis, D. A., Andrews, S. & Joinson, A. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 13, 1–9 (2016).Xu, J., Mitra, S., Van Hoof, C., Yazicioglu, R. & Makinwa, K. A. A. Active Electrodes for Wearable EEG Acquisition: Review and Electronics Design Methodology. IEEE Rev. Biomed. Eng. 3333, 1–1 (2017).Kumari, P., Mathew, L. & Syal, P. Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosens. Bioelectron. 90, 298–307 (2017).He, C., Yao, Y. & Ye, X. An Emotion Recognition System Based on Physiological Signals Obtained by Wearable Sensors. In Wearable Sensors and Robots: Proceedings of International Conference on Wearable Sensors and Robots 2015 (eds Yang, C., Virk, G. S. & Yang, H.) 15–25. https://doi.org/10.1007/978-981-10-2404-7_2 (Springer Singapore, 2017).Nakisa, B., Rastgoo, M. N., Tjondronegoro, D. & Chandran, V. Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 93, 143–155 (2018).Kory Jacqueline, D. & Sidney, K. Affect Elicitation for Affective Computing. In The Oxford Handbook of Affective Computing 371–383 (2014).Ekman, P. The directed facial action task. In Handbook of emotion elicitation and assessment 47–53 (2007).Harmon-Jones, E., Amodio, D. M. & Zinner, L. R. Social psychological methods of emotion elicitation. Handb. Emot. elicitation Assess. 91–105, https://doi.org/10.2224/sbp.2007.35.7.863 (2007)Roberts, N. A., Tsai, J. L. & Coan, J. A. Emotion elicitation using dyadic interaction task. Handbook of Emotion Elicitation and Assessment 106–123 (2007).Nardelli, M., Valenza, G., Greco, A., Lanata, A. & Scilingo, E. P. Recognizing emotions induced by affective sounds through heart rate variability. IEEE Trans. Affect. Comput. 6, 385–394 (2015).Kim, J. Emotion Recognition Using Speech and Physiological Changes. Robust Speech Recognit. Underst. 265–280 (2007).Soleymani, M., Pantic, M. & Pun, T. Multimodal emotion recognition in response to videos (Extended abstract). 2015 Int. Conf. Affect. Comput. Intell. Interact. ACII 2015 3, 491–497 (2015).Baños, R. M. et al. Immersion and Emotion: Their Impact on the Sense of Presence. CyberPsychology Behav. 7, 734–741 (2004).Giglioli, I. A. C., Pravettoni, G., Martín, D. L. S., Parra, E. & Raya, M. A. A novel integrating virtual reality approach for the assessment of the attachment behavioral system. Front. Psychol. 8, 1–7 (2017).Marín-Morales, J., Torrecilla, C., Guixeres, J. & Llinares, C. Methodological bases for a new platform for the measurement of human behaviour in virtual environments. DYNA 92, 34–38 (2017).Vince, J. Introduction to virtual reality. (Media, Springer Science & Business, 2004).Alcañiz, M., Baños, R., Botella, C. & Rey, B. The EMMA Project: Emotions as a Determinant of Presence. PsychNology J. 1, 141–150 (2003).Vecchiato, G. et al. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments. Cogn. Process. 16, 425–429 (2015).Slater, M. & Wilbur, S. A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence Teleoperators Virtual Environ. 6, 603–616 (1997).Riva, G. et al. Affective Interactions Using Virtual Reality: The Link between Presence and Emotions. CyberPsychology Behav. 10, 45–56 (2007).Baños, R. M. et al Changing induced moods via virtual reality. In International Conference on Persuasive Technology (ed. Springer, Berlin, H.) 7–15, https://doi.org/10.1007/11755494_3 (2006).Baños, R. M. et al. Positive mood induction procedures for virtual environments designed for elderly people. Interact. Comput. 24, 131–138 (2012).Gorini, A. et al. Emotional Response to Virtual Reality Exposure across Different Cultures: The Role of the AttributionProcess. CyberPsychology Behav. 12, 699–705 (2009).Gorini, A., Capideville, C. S., De Leo, G., Mantovani, F. & Riva, G. The Role of Immersion and Narrative in Mediated Presence: The Virtual Hospital Experience. Cyberpsychology, Behav. Soc. Netw. 14, 99–105 (2011).Chirico, A. et al. Effectiveness of Immersive Videos in Inducing Awe: An Experimental Study. Sci. Rep. 7, 1–11 (2017).Blascovich, J. et al. Immersive Virtual Environment Technology as a Methodological Tool for Social Psychology. Psychol. Inq. 7965, 103–124 (2012).Peperkorn, H. M., Alpers, G. W. & Mühlberger, A. Triggers of fear: Perceptual cues versus conceptual information in spider phobia. J. Clin. Psychol. 70, 704–714 (2014).McCall, C., Hildebrandt, L. K., Bornemann, B. & Singer, T. Physiophenomenology in retrospect: Memory reliably reflects physiological arousal during a prior threatening experience. Conscious. Cogn. 38, 60–70 (2015).Hildebrandt, L. K., Mccall, C., Engen, H. G. & Singer, T. Cognitive flexibility, heart rate variability, and resilience predict fine-grained regulation of arousal during prolonged threat. Psychophysiology 53, 880–890 (2016).Notzon, S. et al. Psychophysiological effects of an iTBS modulated virtual reality challenge including participants with spider phobia. Biol. Psychol. 112, 66–76 (2015).Amaral, C. P., Simões, M. A., Mouga, S., Andrade, J. & Castelo-Branco, M. A novel Brain Computer Interface for classification of social joint attention in autism and comparison of 3 experimental setups: A feasibility study. J. Neurosci. Methods 290, 105–115 (2017).Eudave, L. & Valencia, M. Physiological response while driving in an immersive virtual environment. 2017 IEEE 14th Int. Conf. Wearable Implant. Body Sens. Networks 145–148, https://doi.org/10.1109/BSN.2017.7936028 (2017).Sharma, G. et al. Influence of landmarks on wayfinding and brain connectivity in immersive virtual reality environment. Front. Psychol. 8, 1–12 (2017).Bian, Y. et al. A framework for physiological indicators of flow in VR games: construction and preliminary evaluation. Pers. Ubiquitous Comput. 20, 821–832 (2016).Egan, D. et al. An evaluation of Heart Rate and Electrodermal Activity as an Objective QoE Evaluation method for Immersive Virtual Reality Environments. 3–8, https://doi.org/10.1109/QoMEX.2016.7498964 (2016).Meehan, M., Razzaque, S., Insko, B., Whitton, M. & Brooks, F. P. Review of four studies on the use of physiological reaction as a measure of presence in stressful virtual environments. Appl. Psychophysiol. Biofeedback 30, 239–258 (2005).Higuera-Trujillo, J. L., López-Tarruella Maldonado, J. & Llinares Millán, C. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality. Appl. Ergon. 65, 398–409 (2016).Felnhofer, A. et al. Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios. Int. J. Hum. Comput. Stud. 82, 48–56 (2015).Anderson, A. P. et al. Relaxation with Immersive Natural Scenes Presented Using Virtual Reality. Aerosp. Med. Hum. Perform. 88, 520–526 (2017).Higuera, J. L. et al. Emotional cartography in design: A novel technique to represent emotional states altered by spaces. In D and E 2016: 10th International Conference on Design and Emotion 561–566 (2016).Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613 (2001).Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59 (1994).Lang, P. J., Bradley, M. M. & Cuthbert, B. N. International Affective Picture System (IAPS): Technical Manual and Affective Ratings. NIMH Cent. Study Emot. Atten. 39–58, https://doi.org/10.1027/0269-8803/a000147 (1997).Nanda, U., Pati, D., Ghamari, H. & Bajema, R. Lessons from neuroscience: form follows function, emotions follow form. Intell. Build. Int. 5, 61–78 (2013).Russell, J. A. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980).Sejima, K. Kazuyo Sejima. 1988–1996. El Croquis 15 (1996).Ochiai, H. et al. Physiological and Psychological Effects of Forest Therapy on Middle-Aged Males with High-NormalBlood Pressure. Int. J. Environ. Res. Public Health 12, 2532–2542 (2015).Noguchi, H. & Sakaguchi, T. Effect of illuminance and color temperature on lowering of physiological activity. Appl. Hum. Sci. 18, 117–123 (1999).Küller, R., Mikellides, B. & Janssens, J. Color, arousal, and performance—A comparison of three experiments. Color Res. Appl. 34, 141–152 (2009).Yildirim, K., Hidayetoglu, M. L. & Capanoglu, A. Effects of interior colors on mood and preference: comparisons of two living rooms. Percept. Mot. Skills 112, 509–524 (2011).Hogg, J., Goodman, S., Porter, T., Mikellides, B. & Preddy, D. E. Dimensions and determinants of judgements of colour samples and a simulated interior space by architects and non‐architects. Br. J. Psychol. 70, 231–242 (1979).Jalil, N. A., Yunus, R. M. & Said, N. S. Environmental Colour Impact upon Human Behaviour: A Review. Procedia - Soc. Behav. Sci. 35, 54–62 (2012).Jacobs, K. W. & Hustmyer, F. E. Effects of four psychological primary colors on GSR, heart rate and respiration rate. Percept. Mot. Skills 38, 763–766 (1974).Jin, H. R., Yu, M., Kim, D. W., Kim, N. G. & Chung, A. S. W. Study on Physiological Responses to Color Stimulation. In International Association of Societies of Design Research (ed. Poggenpohl, S.) 1969–1979 (Korean Society of Design Science, 2009).Vartanian, O. et al. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proc. Natl. Acad. Sci. 110, 1–8 (2013).Tsunetsugu, Y., Miyazaki, Y. & Sato, H. Visual effects of interior design in actual-size living rooms on physiological responses. Build. Environ. 40, 1341–1346 (2005).Stamps, A. E. Physical Determinants of Preferences for Residential Facades. Environ. Behav. 31, 723–751 (1999).Berlyne, D. E. Novelty, Complexity, and Hedonic Value. Percept. Psychophys. 8, 279–286 (1970).Krueger, R. A. & Casey, M. Focus groups: a practical guide for applied research. (Sage Publications, 2000).Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M. & Suri, J. S. Heart rate variability: A review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006).Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-aho, P. O. & Karjalainen, P. A. Kubios HRV - Heart rate variability analysis software. Comput. Methods Programs Biomed. 113, 210–220 (2014).Pan, J. & Tompkins, W. J. A real-time QRS detection algorithm. Biomed. Eng. IEEE Trans. 1, 230–236 (1985).Tarvainen, M. P., Ranta-aho, P. O. & Karjalainen, P. A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 49, 172–175 (2002).Valenza, G. et al. Predicting Mood Changes in Bipolar Disorder Through HeartbeatNonlinear Dynamics. IEEE J. Biomed. Heal. Informatics 20, 1034–1043 (2016).Pincus, S. & Viscarello, R. Approximate Entropy A regularity measure for fetal heart rate analysis. Obstet. Gynecol. 79, 249–255 (1992).Richman, J. & Moorman, J. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Hear. Circ Physiol 278, H2039–H2049 (2000).Peng, C.-K., Havlin, S., Stanley, H. E. & Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995).Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983).Delorme, A. & Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).Colomer Granero, A. et al. A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Front. Comput. Neurosci. 10, 1–14 (2016).Kober, S. E., Kurzmann, J. & Neuper, C. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: An EEG study. Int. J. Psychophysiol. 83, 365–374 (2012).Hyvärinen, A. & Oja, E. Independent component analysis: Algorithms and applications. Neural Networks 13, 411–430 (2000).Welch, P. D. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Aver. aging Over Short, Modified Periodograms. IEEE Trans. AUDIO Electroacoust. 15, 70–73 (1967).Mormann, F., Lehnertz, K., David, P. & Elger, E. C. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D Nonlinear Phenom. 144, 358–369 (2000).Jolliffe, I. T. Principal Component Analysis, Second Edition. Encycl. Stat. Behav. Sci. 30, 487 (2002).Schöllkopf, B., Smola, A. J., Williamson, R. C. & Bartlett, P. L. New support vector algorithms. Neural Comput 12, 1207–1245 (2000).Yan, K. & Zhang, D. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors Actuators, B Chem. 212, 353–363 (2015).Chang, C.-C. & Lin, C.-J. Libsvm: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011).Lewis, P. A., Critchley, H. D., Rotshtein, P. & Dolan, R. J. Neural correlates of processing valence and arousal in affective words. Cereb. Cortex 17, 742–748 (2007).McCall, C., Hildebrandt, L. K., Hartmann, R., Baczkowski, B. M. & Singer, T. Introducing the Wunderkammer as a tool for emotion research: Unconstrained gaze and movement patterns in three emotionally evocative virtual worlds. Comput. Human Behav. 59, 93–107 (2016).Blake, J. & Gurocak, H. B. Haptic glove with MR brakes for virtual reality. IEEE/ASME Trans. Mechatronics 14, 606–615 (2009).Heydarian, A. et al. Immersive virtual environments versus physical built environments: A benchmarking study for building design and user-built environment explorations. Autom. Constr. 54, 116–126 (2015).Kuliga, S. F., Thrash, T., Dalton, R. C. & Hölscher, C. Virtual reality as an empirical research tool - Exploring user experience in a real building and a corresponding virtual model. Comput. Environ. Urban Syst. 54, 363–375 (2015).Yeom, D., Choi, J.-H. & Zhu, Y. Investigation of the Physiological Differences between Immersive Virtual Environment and Indoor Enviorment in a Building. Indoor adn Built Enviornment 0, Accept (2017).Combrisson, E. & Jerbi, K. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136 (2015).He, C., Yao, Y. & Ye, X. An Emotion Recognition System Based on Physiological Signals Obtained by Wearable Sensors. In Wearable Sensors and Robots: Proceedings of International Conference on Wearable Sensors and Robots 2015 (eds. Yang, C., Virk, G. S. & Yang, H.) 15–25, https://doi.org/10.1007/978-981-10-2404-7_2 (Springer Singapore, 2017)

    Diseño, Desarrollo e Implementación de una Plataforma Modular y Multifabricante para la Visualización de Imágenes Médicas Funcionales

    Full text link
    EL OBJETIVO FINAL DE ESTE TRABAJO, ES EL DE CREAR UNA PLATAFORMA DE ARQUITECTURA MODULAR, QUE PERMITA LA VISUALIZACIÓN DE IMÁGENES OBTENIDAS MEDIANTE RESONANCIA MAGNÉTICA Y ESTÉ PROVISTA DE LAS HERRAMIENTAS PRINCIPALES PARA TRATAR Y PROCESAR DICHAS IMÁGENES, FACILITANDO ASÍ, EL DIAGNÓSTICO FINAL AL FACULTATIVO.THE FINAL GOAL OF THIS WORK IS TO CREATE A MODULAR ARCHITECTURE PLATFORM THAT ALLOWS THE VISUALIZATION OF MAGNETIC RESONANCE IMAGES. THE APPLICATION HAS THE MAIN TOOLS FOR PROCESSING IMAGES, THUS FACILITATING THE FINAL DIAGNOSIS BY THE DOCTORColomer Granero, A. (2013). Diseño, Desarrollo e Implementación de una Plataforma Modular y Multifabricante para la Visualización de Imágenes Médicas Funcionales. http://hdl.handle.net/10251/32686.Archivo delegad

    Análisis de Señales Fisiológicas. Aplicación a la Neuroeconomía

    Full text link
    El presente trabajo fin de máster tiene como objetivo el análisis de señales fisiológicas registradas en un entorno de laboratorio durante la recreación de diferentes situaciones o experiencias. Para llevar a cabo el trabajo se ha investigado en diversos temas como el funcionamiento de los equipos de adquisición, el acondicionamiento de las bioseñales, la extracción de características y el análisis estadístico. El resultado final de esta tesina ha sido una aplicación para el análisis de todo experimento que se lleve a cabo en el laboratorio y dos publicaciones, una aceptada y otra en fase de revisión. La herramienta desarrollada será de vital importancia en los futuros estudios de investigación llevados a cabo en Labhuman. Campos como la neuroeconomía, la neurorehabilitación y la neuroarquitectura requieren del registro y posterior análisis de señales fisiológicas. A lo largo del documento, el lector irá descubriendo las técnicas más novedosas en el estudio de las emociones y sentimientos que afloran en el ser humano y el comportamiento del mismo.Colomer Granero, A. (2014). Análisis de Señales Fisiológicas. Aplicación a la Neuroeconomía. http://hdl.handle.net/10251/46300.Archivo delegad
    corecore